首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131022篇
  免费   7990篇
  国内免费   13867篇
化学   85654篇
晶体学   1314篇
力学   10426篇
综合类   1431篇
数学   25420篇
物理学   28634篇
  2024年   79篇
  2023年   1091篇
  2022年   1862篇
  2021年   2674篇
  2020年   3371篇
  2019年   3189篇
  2018年   2835篇
  2017年   3941篇
  2016年   4482篇
  2015年   3609篇
  2014年   5210篇
  2013年   10060篇
  2012年   8658篇
  2011年   7380篇
  2010年   6300篇
  2009年   8476篇
  2008年   8573篇
  2007年   9041篇
  2006年   8017篇
  2005年   6909篇
  2004年   6452篇
  2003年   5337篇
  2002年   4522篇
  2001年   3754篇
  2000年   3261篇
  1999年   3067篇
  1998年   2702篇
  1997年   2275篇
  1996年   1920篇
  1995年   2122篇
  1994年   1853篇
  1993年   1537篇
  1992年   1485篇
  1991年   1081篇
  1990年   952篇
  1989年   761篇
  1988年   613篇
  1987年   465篇
  1986年   400篇
  1985年   391篇
  1984年   379篇
  1983年   207篇
  1982年   311篇
  1981年   225篇
  1980年   224篇
  1979年   238篇
  1978年   174篇
  1977年   102篇
  1976年   94篇
  1973年   49篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
991.
The first principle computational screening was performed to investigate the effect of selected dopants for Li3PS4 sulfide solid electrolyte on its ionic conductivity and stability toward moisture. The results suggest that substitution P5+ using isovalent cations whose electronegativity (EN) value is closer to the value of S has more significant effects on the ionic conductivity, whereby W5+ and Sb5+ can improve most. Similarly, aliovalent cation substitutions with compensating changes in the lithium-ion concentration, particularly those with a lower oxidation state and higher EN, such as Cu2+, effectively enhance the lithium-ion conductivity in this structure. For cation dopants, it is found that ionic conductivity improvement of Li3PS4 is the synergetic effect of EN and oxidation number of the dopant as well as the material's lattice parameter change. Oxides of the considered cation dopants can also improve the ionic conductivity of the material but have much lower lithium-ion conductivity than the cases of cation dopants. However, the metal oxide dopants, particularly those derived from soft Lewis' acid cations, show a marginal improvement in moisture stability of the Li3PS4 electrolyte. The effect of halides and metal halide dopants on the lithium-ion conductivity and moisture stability of Li3PS4 electrolyte are also studied. It is found that metal halides are more effective than any other dopants in improving the ionic conductivity of Li3PS4.  相似文献   
992.
Tuning the interior chemical composition of layered double hydroxides (LDHs) via lattice engineering route is a unique approach to enable multifunctional applications of LDHs. In this regard, the exfoliated 2D LDH nanosheets coupled with various guest species lead to the lattice-engineered LDH-based multifunctional self-assembly with precisely tuned chemical composition. This article reports the synthesis and characterization of mesoporous zinc–chromium-LDH (ZC-LDH) hybridized with isopolyoxovanadate nanohybrids (ZCiV) via lattice-engineered self-assembly between delaminated ZC-LDH nanosheets and isopolyoxovanadate (iPOV) anions. Electrostatic self-assembly between 2D ZC-LDH monolayers and 0D iPOV significantly altered structural, morphological, and surface properties of ZC-LDH. The structural and morphological study demonstrated the formation of mesoporous interconnected sheet-like architectures composed of restacked ZCiV nanosheets with expanded surface area and interlayer spacing. In addition, the ZCiV nanohybrid resistive elements were used as a room-temperature gas sensor. The selectivity of ZCiV nanohybrid was tested for various oxidizing (SO2, Cl2, and NO2) gases and reducing (LPG, CO, H2, H2S, and NH3) gases. The optimized ZCiV nanohybrid demonstrated highly selective SO2 detection with the maximum SO2 response (72%), the fast response time (20 s), low detection limit (0.1 ppm), and long-term stability at room temperature (27 ± 2 °C). Of prime importance, ZCiV nanohybrids exhibited moderately affected SO2 sensing responses with high relative humidity conditions (80%–95%). The outstanding SO2 sensing performance of ZCiV is attributed to the active surface gas adsorptive sites via plenty of mesopores induced by a unique lattice-engineered interconnected sheet-like microstructure and expanded interlayer spacing.  相似文献   
993.
Ceria (CeO2) with phosphatase-like activity is widely recognized as one of the promising nanozymes. In general, shrinkage of the sizes of CeO2 can generate large active surface areas for dephosphorylation reactions. However, synthesizing CeO2 with an ultra-small structure while retaining its surface activity and avoiding its aggregation for use in non-redox biological applications has been a continuous challenge. Herein, a phosphatase-mimicking nanozyme CeO2 with ultra-small, excellent dispersibility, and accessibility, and largely exposed {111} facet was synthesized via a facile one-pot approach. In contrast to previous reports, which focus on enhancing the ·OH-induced cellular damage by peroxidase- or oxidase-like activity of CeO2, the present work demonstrates the phosphatase-like activity of CeO2 for boosting ferroptosis by disrupting cellular homeostasis. Cancer cells require high levels of nicotinamide adenine dinucleotide phosphate (NADP(H)) to enhance GSH synthesis and resist to ferroptosis. By virtue of the phosphatase-like activity, the obtained CeO2 could sustainably dephosphorylate NADP(H) and effectively inhibit the intracellular biosynthesis of GSH. Our results showed that using CeO2 as a phosphatase-mimicking nanozyme to deplete NADP(H) and its synthetic precursor glucose-6-phosphate (G6P) could attenuate the repair mechanisms under oxidative stress via indirectly inhibiting the supply of intracellular GSH and enhancing the occurrence of ferroptosis. The finding offers new insights into the regulation of ferroptosis by high-efficiency non-redox nanozymes, which could pave the way for the development of phosphatase-mimicking nanozymes.  相似文献   
994.
Dibenzyl trisulfide (DTS) is a natural compound with potential cancer-preventive properties occurring in Petiveria alliacea L., an ethnomedicinal plant native to the Americas. Previous studies revealed its inhibitory activity toward cytochrome P450 (CYP)1 enzymes, key in the activation of environmental pollutants. Accordingly, the aim of this study was to design novel DTS analogues, aimed at improving not only inhibitory activity, but also specificity toward CYP1A1. This was achieved by targeting interactions with CYP1A1 residues of identified importance. Three-dimensional structures for the novel analogues were subjected to molecular docking with several CYP isoforms, before being ranked in terms of binding affinity to CYP1A1. With three hydrogen bond donors, two hydrogen bond acceptors, a molecular mass of 361 Da, and a log P of 3.72, the most promising DTS analogue obeys Lipinski's rule of five. Following synthesis and in vitro validation of its CYP1A1-inhibitory properties, this compound may be useful in future cancer-preventive approaches.  相似文献   
995.
An efficient hydrazine substitution of p-nitro-aryl fluorides with hydrazine hydrates catalyzed by FeO(OH)@C nanoparticles is described. This hydrazine substitutions of p-nitro-aryl fluorides bearing electron-withdrawing groups proceeded efficiently with high yield and selectivity. Similarly, hydrogenations of p-nitro-aryl fluorides containing electron-donating groups also smoothly proceeded under mild conditions. Furthermore, with these prepared aryl hydrazines, some phthalazinones, interesting as potential structures for pharmaceuticals, have successfully been synthesized in high yields.  相似文献   
996.
The consumption of non-essential aluminum ion (Al3+) at higher concentration from biotic and abiotic sources can cause serious adverse effects to the human body. Therefore, there is bourgeoning need of developing facile analytical methods for the on-site and real-time monitoring of Al3+ concentration in various environmental and biological samples. The chromo-fluorogenic based sensors have been widely developed in the recent years to detect and monitor Al3+ ion. Among the various types of developed chemical sensors, the Schiff bases proved to have several advantages due to their facile synthesis with high yield, fascinating coordination behavior and easy structural modification. This review was narrated to compile the Schiff bases introduced recently for the sensing of Al3+ in various environmental and biological samples. The designing of sensor, sensing mechanisms and other analytical novelties of the developed sensors are discussed.  相似文献   
997.
Quinoline based aromatic amide foldamers are known to adopt stable folded conformations. We have developed a synthetic approach to produce similar oligomers where all amide bonds, or part of them, have been replaced by an isosteric vinylene group. The results of solution and solid state structural studies show that oligomers exclusively containing vinylene linkages are not well folded, and adopt predominantly flat conformations. In contrast, a vinylene segment flanked by helical oligoamides also folds in a helix, albeit with a slightly lower curvature. The presence of vinylene functions also result in an extension of π-conjugation across the oligomer that may change charge transport properties. Altogether, these results pave the way to foldamers in which both structural control and specific electronic properties may be engineered.  相似文献   
998.
A hitherto unexplored class of molecules for molecular force probe applications are expanded porphyrins. This work proves that mechanical force is an effective stimulus to trigger the interconversion between Hückel and Möbius topologies in [28]hexaphyrin, making these expanded porphyrins suitable to act as conformational mechanophores operating at mild (sub-1 nN ) force conditions. A straightforward approach based on distance matrices is proposed for the selection of pulling scenarios that promote either the planar Hückel topology or the three lowest lying Möbius topologies. This approach is supported by quantum mechanochemical calculations. Force distribution analyses reveal that [28]hexaphyrin selectively allocates the external mechanical energy to molecular regions that trigger Hückel–Möbius interconversions, explaining why certain pulling scenarios favor the Hückel two-sided topology and others favor Möbius single-sided topologies. The meso-substitution pattern on [28]hexaphyrin determines whether the energy difference between the different topologies can be overcome by mechanical activation.  相似文献   
999.
Two structural isomers containing five second-row element atoms with 24 valence electrons were generated and identified by matrix-isolation IR spectroscopy and quantum chemical calculations. The OCBNO complex, which is produced by the reaction of boron atoms with mixtures of carbon monoxide and nitric oxide in solid neon, rearranges to the more stable OBNCO isomer on UV excitation. Bonding analysis indicates that the OCBNO complex is best described by the bonding interactions between a triplet-state boron cation with an electron configuration of (2s)0(2pσ)0(2pπ)2 and the CO/NO ligands in the triplet state forming two degenerate electron-sharing π bonds and two ligand-to-boron dative σ bonds.  相似文献   
1000.
Owing to the limited availability of suitable precursors for vapor phase deposition of rare-earth containing thin-film materials, new or improved precursors are sought after. In this study, we explored new precursors for atomic layer deposition (ALD) of cerium (Ce) and ytterbium (Yb) containing thin films. A series of homoleptic tris-guanidinate and tris-amidinate complexes of cerium (Ce) and ytterbium (Yb) were synthesized and thoroughly characterized. The C-substituents on the N-C-N backbone (Me, NMe2, NEt2, where Me=methyl, Et=ethyl) and the N-substituents from symmetrical iso-propyl (iPr) to asymmetrical tertiary-butyl (tBu) and Et were systematically varied to study the influence of the substituents on the physicochemical properties of the resulting compounds. Single crystal structures of [Ce(dpdmg)3] 1 and [Yb(dpdmg)3] 6 (dpdmg=N,N'-diisopropyl-2-dimethylamido-guanidinate) highlight a monomeric nature in the solid-state with a distorted trigonal prismatic geometry. The thermogravimetric analysis shows that the complexes are volatile and emphasize that increasing asymmetry in the complexes lowers their melting points while reducing their thermal stability. Density functional theory (DFT) was used to study the reactivity of amidinates and guanidinates of Ce and Yb complexes towards oxygen (O2) and water (H2O). Signified by the DFT calculations, the guanidinates show an increased reactivity toward water compared to the amidinate complexes. Furthermore, the Ce complexes are more reactive compared to the Yb complexes, indicating even a reactivity towards oxygen potentially exploitable for ALD purposes. As a representative precursor, the highly reactive [Ce(dpdmg)3] 1 was used for proof-of-principle ALD depositions of CeO2 thin films using water as co-reactant. The self-limited ALD growth process could be confirmed at 160 °C with polycrystalline cubic CeO2 films formed on Si(100) substrates. This study confirms that moving towards nitrogen-coordinated rare-earth complexes bearing the guanidinate and amidinate ligands can indeed be very appealing in terms of new precursors for ALD of rare earth based materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号